Program estimates the power spectral density (PSD)
   of data.  PSD functions can be a combination of:
   1) white noise
    2) Simple power law noise P/f^n
   3) a Gauss Markov version P/(fa^n + f^2)
       where fa=alpha/2*pi
   4) A second power law
   5) Band-pass filtered noise
 
  While estimating the PSD function, program also estimates
   various parameters that describe the time series including
   1) DC term
   2) rate
   3) sinusoidal amplitudes of specified frequencies
   4) rate changes
   5) offset
 
  Program can handle data in various formats including
    2-color EDM data
 
 Input the data type for automatic processing
  most users can will use otr otd or otx
  otr=data, such as inferred monument displacements
        format of yr, julian day, data, error bar
  otd=data, such as inferred monument displacements
        format of yrmoda,  data, error bar
  otx=data, such as inferred monument displacements
        format of yr mo da,  data, error bar
  input number of time series
    program will estimate only one set of PSD functions
  input the period of interest
  start and stop times; year julian_day year julian_day
   "julian day" may be decimal day
  Day numbers from 1960    13175.0000000000        17839.0000000000    
 
  Input the parameters of time series to be estimated
 
  Will rate be estimated? y/n
  Rate changes:
   time is the "hinge point"
  Input the number of rate changes in data
 
  Input the number of periodicities in the data
  Input the period (in days) of            1  period
  Input the period (in days) of            2  period
 
  Offset:  specify first day after offset
  Input the number of offsets
  Input the time (year jul_day) or (year month day) of            1  offset
  Offset at    15375.6161000000    
  Input the time (year jul_day) or (year month day) of            2  offset
  Offset at    15656.9400000000    
 
  Input the number of exponentials in time series
  The number of exponential time constants that are fixed:           0
  rate renomalization is    6.384668   
  Input the format style of baseline data (otr, otx, otd, tmr, pkf)
  Input name of file for baseline number            1
  column of A matrix prior to input pressure data           8
  Number of files of Auxillary data (pressure)
  Number of data read is         4304
  Number of model parameters is            8
 
  Average Sampling interval:     1.083895      days
  Standard deviation of Ave. interval:   0.8538907      days
  Shortest Sampling interval:    1.000000      days
  Longest Sampling Interval:     29.00000      days
 
  Input the minimum sampling interval in days to use
  Number of points in time series for analysis is        4665
 
  Do you want to get rid of "redundent" data? y/n
   Coupled with minimum sampling interval, this can decimate data.
   Or, in the case of two baselines with measurements at  same time,
  it can screw-up design matrix AND make the covariance singular for some cases
  After resampling data and getting rid of redundent data
   Number of observations is         4304
 
  time, data, and A matrix are in prob1(2).out
   prob1.out has stuff after redundencies are removed
   prob2.out has stuff in cronological order before  redundancies removed
 
  Do you want to substitute real data with random numbers? y/n
  Estimate of white noise component of data is:   7.206384   
  methods to decimate data
  0 = no decimation
  1 = keep 2, skip 1, keep 2, skip 1
  2 = keep 2, skip 1, keep 1, skip 2, keep 2, skip 1...
  3 = keep 2, skip 1, keep 1, skip 2, keep 1, skip 3, keep 2 skip 1...
  4 or more...make it option 3
 input choice
  Eigenvalues            1   127.200546298917                2
   153.657986228781                3   1221.91656232437                4
   2113.71630746652                5   2130.43663134457                6
   2170.10470602075                7   2200.15505332048                8
   12557.3695800425    
  Using            8  out of           8  eigenvalues
  RMS fit using white noise model is   9.792912   
  Log MLE for white noise error model is   -15923.37   
 
 Nomimal value for baseline   1    -28.64 +/-       0.04
 Rate in units per year          -0.1596 +/-           0.0095
 Period of  365.250 days,  cos amp=        -3.49 +/-      0.02  sin amp=         3.26 +/-      0.02  magnitude=         4.78 +/-      0.02
 Period of  182.625 days,  cos amp=        -0.44 +/-      0.02  sin amp=        -0.40 +/-      0.02  magnitude=         0.59 +/-      0.02
 Offset number     1 at  2002    34.616 is      40.23 +/-     0.07
 Offset number     2 at  2002   315.940 is       6.90 +/-     0.07
  sampling interval in yrs    2.737851E-03
 
   Input the initial parameters of the PSD and whether   the item is "fix" or "f
 loat"
    if "fix", then the item is not estimated
    if "float", then the item is estimated
 
  Input the white noise "instrument precision" and fix/float
  Input the amplitude first Power law function and fix/float
  Input the exponent 1 < n < 3 and fix/float
  Input the time constant alpha in c/yr and fix/float
 
  Input the parameters for band-passed filtered noise
  Input low and high freq stop band in c/yr
  low frequency stop band is   0.5000000      c/yr
  high frequency stop band is    2.000000      c/yr
  number of poles between 1 and 4
  Input the amplitude and fix/float
  Input the exponent of second Power Law function fix/float
  Input the amplitude of second PL function fix/float
 
  Sometimes, it may be necessary to add white noise to data so
  that a better estimate of long period PSD parameters can be made.
 This is especially true for data that is predominantly power noise
  Enter value of white noise to be added (nominal it should be 0)
  Calculating power law covariance for first set
  Calculating power law covariance for second set
 
  list of trial covariance parameters
    white noise     PL_1 amp     PL_1 exp      GM freq       BP amp      PL_2 amp      PL_2 exp  determinant  chi^2       MLE         cpu
       1.0000       1.0000       1.0000       0.0000       0.0000       0.0000       2.0000   0.193E+03   292980.438  -150638.297       72.680
       0.7000       1.0000       1.0000       0.0000       0.0000       0.0000       2.0000  -0.119E+04   531153.438  -268338.031       65.760
       1.0000       1.9500       1.0000       0.0000       0.0000       0.0000       2.0000   0.551E+03   228566.516  -118789.180       65.550
  Initial solutions for Amoeba
   150638.3       1.000000       1.000000       1.000000       0.000000E+00
   0.000000E+00   0.000000E+00   2.000000   
   268338.0      0.7000000       1.000000       1.000000       0.000000E+00
   0.000000E+00   0.000000E+00   2.000000   
   118789.2       1.000000       1.950000       1.000000       0.000000E+00
   0.000000E+00   0.000000E+00   2.000000   
   150638.3       1.000000       1.000000       1.000000       0.000000E+00
   0.000000E+00   0.000000E+00   2.000000   
   150638.3       1.000000       1.000000       1.000000       0.000000E+00
   0.000000E+00   0.000000E+00   2.000000   
   150638.3       1.000000       1.000000       1.000000       0.000000E+00
   0.000000E+00   0.000000E+00   2.000000   
   150638.3       1.000000       1.000000       1.000000       0.000000E+00
   0.000000E+00   0.000000E+00   2.000000   
   150638.3       1.000000       1.000000       1.000000       0.000000E+00
   0.000000E+00   0.000000E+00   2.000000   
       1.3000       1.2714       1.0000       0.0000       0.0000       0.0000       2.0000   0.132E+04   174504.484   -92522.672       65.520
       1.6000       1.4071       1.0000       0.0000       0.0000       0.0000       2.0000   0.218E+04   118746.250   -65507.523       65.440
       1.1714       1.3878       1.0000       0.0000       0.0000       0.0000       2.0000   0.935E+03   202482.875  -106131.211       65.520
       1.2204       1.4985       1.0000       0.0000       0.0000       0.0000       2.0000   0.113E+04   184345.734   -97253.906       65.590
       1.2834       1.6410       1.0000       0.0000       0.0000       0.0000       2.0000   0.136E+04   164415.156   -87523.047       65.570
       1.3643       1.8241       1.0000       0.0000       0.0000       0.0000       2.0000   0.164E+04   143224.766   -77212.164       65.400
       1.4684       2.0596       1.0000       0.0000       0.0000       0.0000       2.0000   0.199E+04   121519.352   -66700.039       65.410
       1.6023       2.3623       1.0000       0.0000       0.0000       0.0000       2.0000   0.239E+04   100181.875   -56433.719       65.510
       1.9034       3.0435       1.0000       0.0000       0.0000       0.0000       2.0000   0.318E+04    68773.023   -41518.789       65.630
       1.8604       1.7247       1.0000       0.0000       0.0000       0.0000       2.0000   0.284E+04    86536.969   -50066.039       65.500
       1.8858       2.3833       1.0000       0.0000       0.0000       0.0000       2.0000   0.301E+04    76452.273   -45192.828       65.400
       2.0270       2.5253       1.0000       0.0000       0.0000       0.0000       2.0000   0.332E+04    66499.344   -40520.672       65.510
       2.4303       3.0386       1.0000       0.0000       0.0000       0.0000       2.0000   0.410E+04    46203.660   -31155.395       65.520
       2.2917       2.7822       1.0000       0.0000       0.0000       0.0000       2.0000   0.383E+04    52479.074   -34027.707       65.560
       2.4757       2.8727       1.0000       0.0000       0.0000       0.0000       2.0000   0.415E+04    45642.617   -30923.447       65.500
       3.0313       3.3970       1.0000       0.0000       0.0000       0.0000       2.0000   0.501E+04    30785.910   -24353.248       65.520
       2.8181       3.0194       1.0000       0.0000       0.0000       0.0000       2.0000   0.468E+04    36126.281   -26693.301       65.440
       3.0346       4.1325       1.0000       0.0000       0.0000       0.0000       2.0000   0.509E+04    28761.488   -23430.217       65.430
       3.7519       5.4952       1.0000       0.0000       0.0000       0.0000       2.0000   0.605E+04    18316.992   -19159.568       65.450
       3.3146       4.8922       1.0000       0.0000       0.0000       0.0000       2.0000   0.552E+04    23400.576   -21172.289       65.440
       3.6974       4.9505       1.0000       0.0000       0.0000       0.0000       2.0000   0.594E+04    19491.828   -19637.287       65.400
       4.1924       4.8351       1.0000       0.0000       0.0000       0.0000       2.0000   0.641E+04    15947.724   -18340.754       65.420
       5.3369       5.7309       1.0000       0.0000       0.0000       0.0000       2.0000   0.742E+04    10066.285   -16412.479       65.450
       4.6742       5.9389       1.0000       0.0000       0.0000       0.0000       2.0000   0.692E+04    12421.931   -17086.725       65.450
       5.1767       6.5111       1.0000       0.0000       0.0000       0.0000       2.0000   0.736E+04    10162.461   -16391.967       65.400
       6.5499       8.2473       1.0000       0.0000       0.0000       0.0000       2.0000   0.837E+04     6345.566   -15496.672       65.450
       5.8551       8.0240       1.0000       0.0000       0.0000       0.0000       2.0000   0.793E+04     7708.284   -15735.510       65.890
       6.4487       8.9684       1.0000       0.0000       0.0000       0.0000       2.0000   0.835E+04     6320.756   -15464.832       65.400
       8.1573      11.7540       1.0000       0.0000       0.0000       0.0000       2.0000   0.938E+04     3898.782   -15284.209       65.370
       7.5490       9.4338       1.0000       0.0000       0.0000       0.0000       2.0000   0.898E+04     4789.413   -15326.256       65.400
       8.2667      10.6565       1.0000       0.0000       0.0000       0.0000       2.0000   0.938E+04     3951.573   -15312.186       65.420
       9.5021      11.5864       1.0000       0.0000       0.0000       0.0000       2.0000   0.996E+04     3048.049   -15435.300       65.390
       9.9592      12.7562       1.0000       0.0000       0.0000       0.0000       2.0000   0.102E+05     2728.618   -15499.472       65.380
      10.6172      14.9715       1.0000       0.0000       0.0000       0.0000       2.0000   0.105E+05     2319.967   -15617.645       65.410
      11.4596      14.6633       1.0000       0.0000       0.0000       0.0000       2.0000   0.108E+05     2061.600   -15769.482       65.460
       7.2562       9.6839       1.0000       0.0000       0.0000       0.0000       2.0000   0.884E+04     5066.731   -15325.032       65.530
       5.7372       6.2051       1.0000       0.0000       0.0000       0.0000       2.0000   0.774E+04     8691.115   -16038.730       65.430
       9.3972      12.7799       1.0000       0.0000       0.0000       0.0000       2.0000   0.996E+04     3000.721   -15414.119       65.510
       6.2346       8.4272       1.0000       0.0000       0.0000       0.0000       2.0000   0.819E+04     6832.184   -15560.886       65.510
       9.0281      11.6739       1.0000       0.0000       0.0000       0.0000       2.0000   0.976E+04     3309.592   -15371.841       65.550
      10.3520      13.9151       1.0000       0.0000       0.0000       0.0000       2.0000   0.104E+05     2483.092   -15566.000       65.460
       7.5004       9.6643       1.0000       0.0000       0.0000       0.0000       2.0000   0.896E+04     4800.946   -15318.011       65.430
       6.8279      10.0268       1.0000       0.0000       0.0000       0.0000       2.0000   0.862E+04     5525.248   -15342.189       65.450
       6.1987       8.0467       1.0000       0.0000       0.0000       0.0000       2.0000   0.815E+04     7010.972   -15606.014       65.460
       8.5976      11.5966       1.0000       0.0000       0.0000       0.0000       2.0000   0.957E+04     3595.442   -15324.635       65.480
       6.4448       9.1306       1.0000       0.0000       0.0000       0.0000       2.0000   0.836E+04     6285.427   -15454.269       65.460
       8.3823      11.0381       1.0000       0.0000       0.0000       0.0000       2.0000   0.945E+04     3814.846   -15313.561       65.430
       9.0891      11.0667       1.0000       0.0000       0.0000       0.0000       2.0000   0.976E+04     3332.963   -15385.887       65.420
       7.3932      10.2868       1.0000       0.0000       0.0000       0.0000       2.0000   0.894E+04     4808.054   -15297.027       65.460
       8.3235      11.9034       1.0000       0.0000       0.0000       0.0000       2.0000   0.946E+04     3755.213   -15295.147       65.370
       8.9212      12.2875       1.0000       0.0000       0.0000       0.0000       2.0000   0.974E+04     3314.293   -15353.544       65.540
       7.6725      10.3348       1.0000       0.0000       0.0000       0.0000       2.0000   0.908E+04     4516.957   -15294.742       65.410
       7.3155      10.0142       1.0000       0.0000       0.0000       0.0000       2.0000   0.888E+04     4939.837   -15309.153       65.460
       8.3598      12.0465       1.0000       0.0000       0.0000       0.0000       2.0000   0.949E+04     3712.112   -15296.443       65.510
 Amoeba exceeding maximum iterations.
 
  Best fitting solutions
  MLE=   -15284.21   
  white noise=    8.157310   
  Bandpass filter amplitude=    0.000000E+00
  power law noise 1
     amplitude=    11.75405   
     exponent=    1.000000   
     G-M freq=    0.000000E+00
  power law noise 2
     amplitude=    0.000000E+00
     exponent=    2.000000   
 
       9.7888      11.7540       1.0000       0.0000       0.0000       0.0000       2.0000   0.101E+05     2886.873   -15476.197       65.460
       8.1573      22.9204       1.0000       0.0000       0.0000       0.0000       2.0000   0.997E+04     2808.724   -15330.854       65.510
  Initial solutions for Amoeba
   15284.21       8.157310       11.75405       1.000000       0.000000E+00
   0.000000E+00   0.000000E+00   2.000000   
   15476.20       9.788773       11.75405       1.000000       0.000000E+00
   0.000000E+00   0.000000E+00   2.000000   
   15330.85       8.157310       22.92039       1.000000       0.000000E+00
   0.000000E+00   0.000000E+00   2.000000   
   15284.21       8.157310       11.75405       1.000000       0.000000E+00
   0.000000E+00   0.000000E+00   2.000000   
   15284.21       8.157310       11.75405       1.000000       0.000000E+00
   0.000000E+00   0.000000E+00   2.000000   
   15284.21       8.157310       11.75405       1.000000       0.000000E+00
   0.000000E+00   0.000000E+00   2.000000   
   15284.21       8.157310       11.75405       1.000000       0.000000E+00
   0.000000E+00   0.000000E+00   2.000000   
   15284.21       8.157310       11.75405       1.000000       0.000000E+00
   0.000000E+00   0.000000E+00   2.000000   
       6.5258      14.9444       1.0000       0.0000       0.0000       0.0000       2.0000   0.877E+04     4950.469   -15202.870       65.590
       4.8944      16.5396       1.0000       0.0000       0.0000       0.0000       2.0000   0.804E+04     6856.128   -15426.552       65.530
       7.6912       1.4992       1.0000       0.0000       0.0000       0.0000       2.0000   0.879E+04     6659.046   -16076.798       65.520
       8.0408      17.5651       1.0000       0.0000       0.0000       0.0000       2.0000   0.962E+04     3342.892   -15250.721       65.570
       7.6579      14.3259       1.0000       0.0000       0.0000       0.0000       2.0000   0.928E+04     3973.027   -15220.808       65.480
       7.5152      15.0607       1.0000       0.0000       0.0000       0.0000       2.0000   0.925E+04     3994.780   -15207.222       65.440
       7.3317      16.0055       1.0000       0.0000       0.0000       0.0000       2.0000   0.923E+04     4022.129   -15192.372       65.470
       6.9189      18.1312       1.0000       0.0000       0.0000       0.0000       2.0000   0.917E+04     4077.885   -15168.667       65.450
       6.9779      17.8275       1.0000       0.0000       0.0000       0.0000       2.0000   0.918E+04     4070.602   -15171.293       65.450
       6.6409      19.5628       1.0000       0.0000       0.0000       0.0000       2.0000   0.915E+04     4108.121   -15159.361       65.420
       5.8827      23.4671       1.0000       0.0000       0.0000       0.0000       2.0000   0.913E+04     4143.565   -15155.591       65.450
       5.9911      22.9093       1.0000       0.0000       0.0000       0.0000       2.0000   0.913E+04     4143.586   -15154.493       65.590
       4.9079      28.4870       1.0000       0.0000       0.0000       0.0000       2.0000   0.920E+04     4049.646   -15183.117       65.510
       5.5220      18.6252       1.0000       0.0000       0.0000       0.0000       2.0000   0.856E+04     5394.006   -15211.683       65.460
       5.2946      23.0928       1.0000       0.0000       0.0000       0.0000       2.0000   0.885E+04     4715.053   -15166.986       65.440
       7.3655      20.0699       1.0000       0.0000       0.0000       0.0000       2.0000   0.949E+04     3512.877   -15203.794       65.450
       5.3296      25.0657       1.0000       0.0000       0.0000       0.0000       2.0000   0.905E+04     4322.794   -15162.197       65.420
       4.8975      21.4838       1.0000       0.0000       0.0000       0.0000       2.0000   0.853E+04     5480.706   -15226.291       65.470
       6.7485      20.4234       1.0000       0.0000       0.0000       0.0000       2.0000   0.926E+04     3905.840   -15165.524       65.450
       5.8008      28.1747       1.0000       0.0000       0.0000       0.0000       2.0000   0.948E+04     3531.001   -15203.898       65.530
       6.3446      18.2520       1.0000       0.0000       0.0000       0.0000       2.0000   0.892E+04     4572.325   -15162.458       65.520
       5.1678      25.4129       1.0000       0.0000       0.0000       0.0000       2.0000   0.901E+04     4392.139   -15165.720       65.530
       4.7265      27.1898       1.0000       0.0000       0.0000       0.0000       2.0000   0.902E+04     4412.730   -15179.054       65.560
       6.3708      20.3958       1.0000       0.0000       0.0000       0.0000       2.0000   0.909E+04     4212.109   -15154.090       65.540
       6.6583      21.4575       1.0000       0.0000       0.0000       0.0000       2.0000   0.929E+04     3837.766   -15167.026       65.510
       5.6355      22.6840       1.0000       0.0000       0.0000       0.0000       2.0000   0.896E+04     4479.419   -15156.088       65.520
       6.9187      18.3577       1.0000       0.0000       0.0000       0.0000       2.0000   0.919E+04     4047.370   -15168.460       65.440
       5.6055      23.6491       1.0000       0.0000       0.0000       0.0000       2.0000   0.903E+04     4339.257   -15156.240       65.490
       5.0114      24.2689       1.0000       0.0000       0.0000       0.0000       2.0000   0.885E+04     4745.451   -15174.772       65.490
       6.3143      21.3848       1.0000       0.0000       0.0000       0.0000       2.0000   0.914E+04     4112.492   -15154.622       65.500
       5.4067      27.3354       1.0000       0.0000       0.0000       0.0000       2.0000   0.927E+04     3896.867   -15177.643       65.450
       6.1101      20.5228       1.0000       0.0000       0.0000       0.0000       2.0000   0.899E+04     4419.531   -15153.302       65.400
       6.6447      19.2238       1.0000       0.0000       0.0000       0.0000       2.0000   0.913E+04     4153.084   -15159.452       65.400
       6.3159      20.6842       1.0000       0.0000       0.0000       0.0000       2.0000   0.909E+04     4215.089   -15153.476       65.460
       6.5717      19.7932       1.0000       0.0000       0.0000       0.0000       2.0000   0.914E+04     4132.414   -15157.688       65.460
       5.8471      22.6851       1.0000       0.0000       0.0000       0.0000       2.0000   0.905E+04     4296.753   -15153.289       65.420
       6.6022      20.7586       1.0000       0.0000       0.0000       0.0000       2.0000   0.922E+04     3973.179   -15160.868       65.420
       5.8772      22.2027       1.0000       0.0000       0.0000       0.0000       2.0000   0.902E+04     4349.986   -15152.851       65.400
       6.3534      19.6143       1.0000       0.0000       0.0000       0.0000       2.0000   0.903E+04     4346.274   -15154.950       65.420
       6.2357      20.5775       1.0000       0.0000       0.0000       0.0000       2.0000   0.905E+04     4299.920   -15152.851       65.410
       5.8994      21.4659       1.0000       0.0000       0.0000       0.0000       2.0000   0.897E+04     4452.893   -15153.516       65.500
       6.1965      19.5290       1.0000       0.0000       0.0000       0.0000       2.0000   0.895E+04     4502.954   -15156.316       65.580
       6.0424      22.0642       1.0000       0.0000       0.0000       0.0000       2.0000   0.908E+04     4232.460   -15152.586       65.530
       5.7229      22.5192       1.0000       0.0000       0.0000       0.0000       2.0000   0.898E+04     4430.932   -15154.572       65.550
       6.2088      20.9267       1.0000       0.0000       0.0000       0.0000       2.0000   0.906E+04     4268.928   -15152.562       65.570
       6.2826      21.2950       1.0000       0.0000       0.0000       0.0000       2.0000   0.912E+04     4151.414   -15153.802       65.560
       5.9952      21.4232       1.0000       0.0000       0.0000       0.0000       2.0000   0.901E+04     4374.979   -15152.454       65.550
       5.7745      22.2878       1.0000       0.0000       0.0000       0.0000       2.0000   0.899E+04     4425.007   -15153.998       65.530
       6.1806      21.0851       1.0000       0.0000       0.0000       0.0000       2.0000   0.906E+04     4268.485   -15152.417       65.500
       6.0005      22.6099       1.0000       0.0000       0.0000       0.0000       2.0000   0.911E+04     4182.114   -15153.563       65.540
       6.0827      21.0446       1.0000       0.0000       0.0000       0.0000       2.0000   0.902E+04     4359.525   -15152.402       65.550
       6.3308      19.9788       1.0000       0.0000       0.0000       0.0000       2.0000   0.904E+04     4309.770   -15154.043       65.520
       5.9680      22.0086       1.0000       0.0000       0.0000       0.0000       2.0000   0.905E+04     4303.811   -15152.383       65.620
       6.3267      20.4059       1.0000       0.0000       0.0000       0.0000       2.0000   0.907E+04     4248.056   -15153.568       65.560
       5.9896      21.7535       1.0000       0.0000       0.0000       0.0000       2.0000   0.903E+04     4326.403   -15152.272       65.540
 Amoeba exceeding maximum iterations.
 
  Best fitting solutions
  MLE=   -15152.27   
  white noise=    5.989558   
  Bandpass filter amplitude=    0.000000E+00
  power law noise 1
     amplitude=    21.75346   
     exponent=    1.000000   
     G-M freq=    0.000000E+00
  power law noise 2
     amplitude=    0.000000E+00
     exponent=    2.000000   
 
       5.9896      21.7535       1.0000       0.0000       0.0000       0.0000       2.0000   0.903E+04     4326.403   -15152.272       65.600
  Start the covariance calculations for noise model
  best estimate   5.989558       dither   1.000000E-02
  best estimate   21.75346       dither   1.000000E-02
  best estimate   1.000000       dither   5.000000E-02
  best estimate   0.000000E+00   dither   5.000000E-02
  best estimate   0.000000E+00   dither   5.000000E-02
  best estimate   0.000000E+00   dither   5.000000E-02
  best estimate   2.000000       dither  0.1000000   
       5.9297      21.7535       1.0000       0.0000       0.0000       0.0000       2.0000   0.901E+04     4378.312   -15152.646       65.550
  Dither changed to    6.000000E-03
       5.9536      21.7535       1.0000       0.0000       0.0000       0.0000       2.0000   0.902E+04     4357.449   -15152.455       65.590
  Dither changed to    3.600000E-03
       5.9680      21.7535       1.0000       0.0000       0.0000       0.0000       2.0000   0.902E+04     4344.996   -15152.368       65.550
  Dither changed to    2.160000E-03
       5.9766      21.7535       1.0000       0.0000       0.0000       0.0000       2.0000   0.903E+04     4337.546   -15152.324       65.570
  Dither changed to    1.296000E-03
       5.9818      21.7535       1.0000       0.0000       0.0000       0.0000       2.0000   0.903E+04     4333.084   -15152.302       65.580
  Dither changed to    7.776001E-04
       5.9849      21.7535       1.0000       0.0000       0.0000       0.0000       2.0000   0.903E+04     4330.411   -15152.289       65.560
       5.9942      21.7535       1.0000       0.0000       0.0000       0.0000       2.0000   0.904E+04     4322.401   -15152.258       65.490
       5.9896      21.5359       1.0000       0.0000       0.0000       0.0000       2.0000   0.902E+04     4361.599   -15152.377       65.610
  Dither changed to    6.000000E-03
       5.9896      21.6229       1.0000       0.0000       0.0000       0.0000       2.0000   0.902E+04     4347.481   -15152.315       65.570
  Dither changed to    3.600000E-03
       5.9896      21.6751       1.0000       0.0000       0.0000       0.0000       2.0000   0.903E+04     4339.036   -15152.291       65.550
       5.9896      21.8318       1.0000       0.0000       0.0000       0.0000       2.0000   0.904E+04     4313.813   -15152.276       65.570
       5.9942      21.8318       1.0000       0.0000       0.0000       0.0000       2.0000   0.904E+04     4309.832   -15152.267       65.570
       5.9849      21.8318       1.0000       0.0000       0.0000       0.0000       2.0000   0.904E+04     4317.799   -15152.288       65.590
       5.9942      21.6751       1.0000       0.0000       0.0000       0.0000       2.0000   0.903E+04     4335.014   -15152.271       65.590
       5.9849      21.6751       1.0000       0.0000       0.0000       0.0000       2.0000   0.903E+04     4343.063   -15152.313       65.550
 
  Inverse covariance matrix
           1 acov=    90.03841       14.05651       0.000000E+00   0.000000E+00
   0.000000E+00   0.000000E+00   0.000000E+00
           2 acov=    14.05651       3.662404       0.000000E+00   0.000000E+00
   0.000000E+00   0.000000E+00   0.000000E+00
           3 acov=    0.000000E+00   0.000000E+00   0.000000E+00   0.000000E+00
   0.000000E+00   0.000000E+00   0.000000E+00
           4 acov=    0.000000E+00   0.000000E+00   0.000000E+00   0.000000E+00
   0.000000E+00   0.000000E+00   0.000000E+00
           5 acov=    0.000000E+00   0.000000E+00   0.000000E+00   0.000000E+00
   0.000000E+00   0.000000E+00   0.000000E+00
           6 acov=    0.000000E+00   0.000000E+00   0.000000E+00   0.000000E+00
   0.000000E+00   0.000000E+00   0.000000E+00
           7 acov=    0.000000E+00   0.000000E+00   0.000000E+00   0.000000E+00
   0.000000E+00   0.000000E+00   0.000000E+00
  The eigenvalues    1.432470       92.26835   
  ier=           0
 
  the covariance matrix
           1  cov=    2.770945E-02 -0.1063504       0.000000E+00   0.000000E+00
   0.000000E+00   0.000000E+00   0.000000E+00
           2  cov=  -0.1063504      0.6812234       0.000000E+00   0.000000E+00
   0.000000E+00   0.000000E+00   0.000000E+00
           3  cov=    0.000000E+00   0.000000E+00   0.000000E+00   0.000000E+00
   0.000000E+00   0.000000E+00   0.000000E+00
           4  cov=    0.000000E+00   0.000000E+00   0.000000E+00   0.000000E+00
   0.000000E+00   0.000000E+00   0.000000E+00
           5  cov=    0.000000E+00   0.000000E+00   0.000000E+00   0.000000E+00
   0.000000E+00   0.000000E+00   0.000000E+00
           6  cov=    0.000000E+00   0.000000E+00   0.000000E+00   0.000000E+00
   0.000000E+00   0.000000E+00   0.000000E+00
           7  cov=    0.000000E+00   0.000000E+00   0.000000E+00   0.000000E+00
   0.000000E+00   0.000000E+00   0.000000E+00
 
  Cross correlation matrix
           1  cross correlation    1.000000     -0.7740703       0.000000E+00
   0.000000E+00   0.000000E+00   0.000000E+00   0.000000E+00
           2  cross correlation  -0.7740703       1.000000       0.000000E+00
   0.000000E+00   0.000000E+00   0.000000E+00   0.000000E+00
           3  cross correlation    0.000000E+00   0.000000E+00   0.000000E+00
   0.000000E+00   0.000000E+00   0.000000E+00   0.000000E+00
           4  cross correlation    0.000000E+00   0.000000E+00   0.000000E+00
   0.000000E+00   0.000000E+00   0.000000E+00   0.000000E+00
           5  cross correlation    0.000000E+00   0.000000E+00   0.000000E+00
   0.000000E+00   0.000000E+00   0.000000E+00   0.000000E+00
   15152.27   
 
 
  row number for optimal solution is         115
  nmod=           8
  -32.07200       0.000000E+00   9.846000       0.000000E+00  -3.540000   
   0.000000E+00   3.686000       0.000000E+00 -0.4670000       0.000000E+00
 -0.3010000       0.000000E+00   26.66000       0.000000E+00   5.183000   
   0.000000E+00
  Eigenvalues            1   3.74611910120969D-002           2
   7.17193826658182D-002           3  0.127016565108053                4
  0.251911574073773                5   1.57312529521336                6
   1.62081302617026                7   3.01568244130233                8
   3.10585976417084    
  Using            8  out of           8  eigenvalues
       5.9896      21.7535       1.0000       0.0000       0.0000       0.0000       2.0000   0.903E+04     4326.403   -15152.272       68.960
  number of rows is         117
  -32.07200       2.842000       9.846000       4.446000      -3.540000   
  0.8020000       3.686000      0.8040000     -0.4670000      0.5710000   
 -0.3010000      0.5790000       26.66000       3.511000       5.183000   
   3.502000   
  Residual, decimated data in resid_dec.out
  col 1 & 2, time; 3 is residual,4 is calculated, 5 is data
  Residual, data in resid.out
  col 1 & 2, time; 3 is residual,4 is calculated, 5 is data
 
 
 Nomimal value for baseline   1    -32.07 +/-       2.84
 Rate in units per year           1.5421 +/-           0.6964
 Period of  365.250 days,  cos amp=        -3.54 +/-      0.80  sin amp=         3.69 +/-      0.80  magnitude=         5.11 +/-      0.80
 Period of  182.625 days,  cos amp=        -0.47 +/-      0.57  sin amp=        -0.30 +/-      0.58  magnitude=         0.56 +/-      0.57
 Offset number     1 at  2002    34.616 is      26.66 +/-     3.51
 Offset number     2 at  2002   315.940 is       5.18 +/-     3.50
 
 
  Best fitting solutions
  MLE=   -15152.27   
  white noise=    5.989558      +/-  0.1664616    
  Bandpass filter amplitude=    0.000000E+00  +/-   0.000000E+00
  power law noise 1
     amplitude=    21.75346      +/-  0.8253626   
     exponent=    1.000000      +/-   0.000000E+00
     G-M freq=    0.000000E+00  +/-   0.000000E+00
  power law noise 2
     amplitude=    0.000000E+00  +/-   0.000000E+00
     exponent=    2.000000      +/-   0.000000E+00
Subscribe to:
Post Comments (Atom)


2 comments:
Use the same time series, SOPAC estimates:
wuhn_u_unf.out
postfit chi2 1.000
postfit rms 9.772
white+flicker noise model
white noise amp 6.197
flicker noise amp 20.333
Reference_X -2267749.367762
Reference_Y 5009154.302235
Reference_Z 3221290.717298
start_epoch 1996.0697
end_epoch 2008.8374
num_days 4304
y-intercept -656.844 1364.978
slope_1 0.313 0.683 1996.0697 - 2008.8374
num_days_1 4304
sine_ann 1.495 0.757 1996.0697 - 2008.8374
cosine_ann -4.701 0.762 1996.0697 - 2008.8374
phase_ann 2.834
annual 4.933 1.074 1996.0697 - 2008.8374
sine_semi -0.774 0.542 1996.0697 - 2008.8374
cosine_semi -0.026 0.549 1996.0697 - 2008.8374
phase_semi 4.679
semi 0.775 0.771 1996.0697 - 2008.8374
offset_1 41.585 3.504 2002.0616
offset_2 3.216 3.356 2002.8315
Assume white noise model, I estimates:
# slope 1: -0.00020 +- 0.00009 (1996.06970-2008.83740)
# offset 1: 0.03980 +- 0.00070 (2002.06160)
# offset 2: 0.00772 +- 0.00070 (2002.83150)
# annual: 0.00495 +- 0.00021 ; phase: -1.27387
# semi-annual: 0.00070 +- 0.00021 ; phase: -3.03160
Post a Comment